
Constraint Satisfaction, Packet Routing, and the Lovász
Local Lemma

David G. Harris
∗

Aravind Srinivasan
†

ABSTRACT
Constraint-satisfaction problems (CSPs) form a basic fam-
ily of NP -hard optimization problems that includes satisfi-
ability. Motivated by the sufficient condition for the sat-
isfiability of SAT formulae that is offered by the Lovász
Local Lemma, we seek such sufficient conditions for arbi-
trary CSPs. To this end, we identify a variable-covering
radius–type parameter for the infeasible configurations of
a given CSP, and also develop an extension of the Lovász
Local Lemma in which many of the events to be avoided
have probabilities arbitrarily close to one; these lead to a
general sufficient condition for the satisfiability of arbitrary
CSPs. One primary application is to packet-routing in the
classical Leighton-Maggs-Rao setting, where we introduce
several additional ideas in order to prove the existence of
near-optimal schedules; further applications in combinato-
rial optimization are also shown.

1. INTRODUCTION
Constraint-satisfaction problems (CSPs) abstract a large

variety of problems in combinatorial optimization. In their
basic form, there are n variables where the ith variable is
required to take values from some finite ordered set Ai.
A CSP then is just a collection of infeasible configurations
F ⊆ A1×A2× · · · ×An; the decision problem is whether F
is nonempty, and the optimization problem is to find some
element of F (if this set is nonempty). The k-CNF-SAT
problem is a well-known instance of CSPs, in which each
element of F is a conjunction of k literals formed by the un-

∗Department of Applied Mathematics, University of Mary-
land, College Park, MD 20742. Research supported in
part by NSF Award CNS-1010789. Email: davidghar-
ris29@hotmail.com
†Department of Computer Science and Institute for Ad-
vanced Computer Studies, University of Maryland, College
Park, MD 20742. Research supported in part by NSF
Awards CCR-0208005, ITR CNS-0426683, CNS-0626636,
and CNS-1010789. Email: srin@cs.umd.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1âĂŞ4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$10.00.

derlying Boolean variables or their complements (with the
other n − k being don’t-cares). In addition to algorithms
and complexity, CSPs have also spurred research in algebra,
logic, model theory, probabilistic methods, phase transitions
etc.; we just mention the algebraic dichotomy conjecture [7]
as one of the central contributions to, and conjectures of,
this field. Motivated by the well-known sufficient condition
provided by the Lovász Local Lemma (LLL) for the satis-
fiability of k-CNF-SAT formulae [10], this work develops a
general sufficient condition for the satisfiability of arbitrary
CSPs – formulating a generalization of the LLL in the pro-
cess.

We start by recalling how a key parameter works well
with the LLL, for k-CNF-SAT instances (where each clause
has exactly k literals, say). Let e denote the base of the
natural logarithm. The basic (“symmetric”) version of the
LLL states that if we have a collection of m “bad” events
B1, B2, . . . , Bm such that Pr[Bi] ≤ p with each Bi “depend-
ing” on at most d other Bj , then e · p · (d + 1) ≤ 1 is a
sufficient condition for Pr[B1 ∩ B2 ∩ · · · ∩ Bm] > 0. The
fact that m � d is allowed, leads to a number of appli-
cations of the LLL [2]. The more general (“asymmetric”)
version of the LLL allows heterogeneous values for the prob-
ability and amount of independence of each Bi. For nearly
all applications of the LLL, there are now polynomial-time
algorithms which can find configurations that avoid all bad
events [22, 14, 18, 24]. An easy application of the symmetric
version of the LLL shows that if the maximum number d of
clauses in which any literal (Xi or Xi) appears is at most
2k/(ek) − 1/k, then the formula is satisfiable (see [30, 12]
for further improvements); furthermore, a satisfying assign-
ment can be found in polynomial time [22]. We ask: what
is an analog of d for an arbitrary CSP P, a suitable upper
bound for which implies the satisfiability of P?

To understand this, let us observe that any CSP can be
written as a simple 0 − 1 integer linear program as follows.
Denote the set {1, 2, . . . , t} by [t]. Let xi,j be the indica-
tor variable for the ith variable taking on the value j ∈ Ai;
thus, ∀i ∈ [n],

∑
j∈Ai xi,j = 1. Next, each forbidden con-

figuration 〈i1, j1〉, . . . , 〈ik, jk〉 can be avoided by writing the
constraint “xi1,j1 + · · · + xik,jk ≤ k − 1”. Note that this
linear packing constraint is (of course) monotone decreas-
ing in the variables x. Allowing more general, nonlinear but
monotone decreasing constraints could make the description
succinct and/or sparse; we will see this in our packet-routing
application.

With this in mind, we start with the following formulation
of arbitrary CSPs:

Definition 1.1. (CSPs as Integer Programs with De-
creasing Boolean Constraints.) Consider the following
type of integer program, where xi,j here is the indicator vari-
able for the ith variable of the CSP taking on the value
j ∈ Ai, and V = {xi,j : i ∈ [n], j ∈ Ai} denotes the set
of all these indicator variables:

(Assignment Constraints) ∀i ∈ [n],
∑
j∈Ai xi,j = 1.

(Decreasing Boolean Constraints) For all k ∈ [`], a
given Boolean function Bk, which is an increasing
function of each of the variables in some given subset
Sk ⊆ V, should be false. (As our goal is to avoid Bk,
we sometimes refer to these as “bad events”.)

(Integrality) ∀(i, j), xi,j ∈ {0, 1}.

A technical remark. Our integer programs will have the
above three types of constraints; a remark is in order. Sup-
pose |Ai| = 2, say, and that we have variables xi,1 and xi,2
which are constrained to sum to 1, by the assignment con-
straint. Now if Bk is an increasing function of xi,1, it is a
decreasing function of xi,2 on the set of feasible solutions.
To avoid any confusion about this, the reader is asked to
note that for each k, there is some Sk ⊆ V such that Bk is
an increasing function of each variable in Sk (e.g., we will
have xi,1 ∈ Sk here).

Our new “assignment LLL” is given as Theorem 2.2; its
proof departs from the standard inductive proof of the LLL
to develop a different induction that combines the “Rödl
Nibble” [?] and correlation inequalities. Intriguingly, our
approach will set each xi,j to 1 with infinitesimally-small
probability: note that each assignment constraint is now
very likely to be violated. Nevertheless, this yields a path-
way to proving the theorem. We apply the assignment LLL
to improve bounds of [1, 3, 8, 15, 16, 19, 20, 25, 31]. How-
ever, our approach here does not appear to lead to an al-
gorithmic counterpart of our assignment LLL. In many of
our examples, this extended LLL framework can be applied
as an almost automatic replacement for the original LLL.
Hence, many of these applications will be very direct. In
addition, we will examine the case of packet-routing in the
classical setting of [20] in detail: we show here that there
are many other improvements possible, using the standard
LLL and further using our assignment LLL.

The following definition will be crucial:

Definition 1.2. Yi,j = {k | xi,j ∈ Sk} indexes those Bk
that increase explicitly as a function of xi,j.

Informal discussion of the assignment LLL. The key
analog of the parameter d from k-SAT, is d = maxi,j |Yi,j |:
informally, we can view d as the “variable-covering radius”
of the CSP – the maximum number of events that are influ-
enced by any given variable. To understand the assignment
LLL informally (albeit somewhat imprecisely), it roughly
says that a sufficient condition for the CSP to be satisfiable,
is the existence of a non-negative vector z (which is a relax-
ation of the vector x required by the three CSP constraints
above) and a corresponding random vector Z – as well as
some small δ > 0 – with the following two properties:

1. the assignment constraints are slightly “over-satisfied”,
i.e., for all i,

∑
j∈Ai zij ≥ e

δ, and

2. if ~Z = (Zi,j) is the vector of mutually independent
Bernoulli random variables with P(Zi,j = 1) = zi,j ,

then for all (i, j) and all k ∈ Yi,j , P(Bk(~Z) | Zi,j =
1) < δ/d.

(We stress that this is an approximate restatement, and is
not to be taken literally.) The fact that the probability
bound in the second item depends on d alone, is one of the
key benefits brought by the assignment LLL. In contrast, a
typical method of applying the LLL to this type of problem is
to select exactly one value for each variable in the CSP – very
often independently, with the ith CSP variable chosen from
some distribution on Ai (the distribution is often uniform or
given by an LP or other convex program) – and to then treat
the Bk as the bad events. The advantage of this method is
that the assignment constraints are automatically satisfied.
Unfortunately: (i) this introduces significant dependencies
(e.g., between Bk and Bk′ that respectively depend on xi,j
and xi,j′), and more importantly, (ii) some Bk may depend
on a large number of variables, even if d is small – thus
making the dependencies among the Bk “large.” This is the
difference between row-sparsity and column-sparsity of the
dependency matrix.

We next discuss a variety of applications, and compare
them to the best previous results (many proved using the
standard LLL).

(a) Packet routing: the Leighton-Maggs-Rao frame-
work. A fundamental packet-routing problem is as follows.
Suppose we are given an undirected graph G with N pack-
ets, in which we need to route each packet i from vertex si to
vertex ti along a given simple path Pi. The constraints are
that each edge can only carry one packet at a time, and each
edge traversal takes unit time for a packet; nodes are allowed
to queue packets. The goal is to conduct routings along the
paths Pi, in order to minimize the makespan T (the time by
which all packets have reached their destinations).

Two natural lower-bounds on T are the congestion C (the
maximum number of the Pi that contain any given edge of
the graph) and the dilation D (the length of the longest
Pi); thus, (C + D)/2 is always a lower-bound, and there
exist families of instances with T ≥ (1 + Ω(1)) · (C + D)
[28]. A seminal result proven in [20] (via iterated applica-
tion of the LLL, which has become a key tool in its own
right [21]) is that in fact T ≤ O(C + D) for all input in-
stances, using constant-sized queues at the edges; both this
result and its approach, have been used in much work in
networks and combinatorial optimization. This argument
was refined and simplified in [29, 25], leading to a (construc-
tive) bound of 23.4(C+D) [25]. By introducing several new
ideas in scheduling packets along time intervals, we improve
this to 7.26(C + D) (non-constructively) and 8.84(C + D)
(constructively), thus approaching the simple lower bound
for this fundamental problem.

The packet-routing application above involves increasing
Boolean functions Bk that are non-linear. The rest of our
applications have linear “packing” constraints; i.e., each bad
event Bk is of the form “

∑
(i,j) ak(i, j)xi,j > bk”, where the

given values {ak(i, j)} and bk are non-negative.

(b) Integrality gap for column-sparse matrices. Con-
sider the special case of our family of CSPs where each Bk is
a linear packing constraint: of the form “

∑
(i,j) ak(i, j)xi,j >

bk”, where {ak(i, j)} ∈ {0, 1} and bk ≥ 0. When does such
an integer linear program have a feasible solution? In par-

ticular, suppose there exists a solution x′ to the natural frac-
tional relaxation1 of our CSPs in which

∑
(i,j) ak(i, j)x′i,j ≤

b′k holds for each k ∈ [`]; how small should the b′k be for
our CSP to be satisfiable? We work in the classical column-
sparse setting [4, 17] where for each (i, j), the number of k
for which ak(i, j) is nonzero, is at most some parameter d.

Consider, for notational simplicity, the case where b′k ≥
Ω(log d) for all k. There is a classical linear-algebraic ap-
proach to such problems [4, 17]; in particular, the work of
[17] shows that “bk ≥ b′k + d for each k” suffices. Comple-
menting this, our assignment LLL shows that, the condition
“bk ≥ b′k(1 + d−C) +C′ ·

√
b′k log d for each k” is a sufficient

condition, where C is any positive constant, and where C′ is
a constant that only depends on C. The related theorems of
[31, 19] give a weaker result – which, furthermore, holds only
when all the bk are within O(1) of each other. However, the
results of [17, 19] are constructive, while ours is not. (Note
again that these earlier results hold only when each Bk is
linear, while we allow arbitrary increasing functions.)

(c) Independent transversals. Let n and ∆ denote as
usual the number of vertices and maximum degree respec-
tively, of an undirected graph G = (V,E). It is well-known
that G has an independent set of size at least n/(∆ + 1).
What if we want independent sets with much more struc-
ture? In particular, say that we have a partition of the ver-
tices of G into blocks of size b. We wish to select exactly one
vertex from each block such that the selected vertices form
an independent set in G. This is known as an independent
transversal.

A well-known result of Alon using a simple LLL-based
proof [1, 2] shows that if b ≥ 2e∆, thenG has an independent
transversal. Thus, at the cost of the loss of a small constant
(2e ∼ 5.44), we get much more structure as compared to
the basic “n/(∆ + 1)” lower-bound. Using the algorithmic
LLL of [24], this can be improved to show that b ≥ 4∆ is
sufficient. The existentially optimal, but non-constructive,
result of [15, 16] states that b ≥ 2∆ suffices.

Our approach shows that G ≥ 4∆ + 1 suffices, moreover,
we are able to obtain two improvements compared to previ-
ous results. First, if the given partition of V has the prop-
erty that the average degree of the vertices in each block
is at most d, then the method of [1] shows that it suffices
to have b ≥ 2e(d + 1), which does not appear to carry over
to the corresponding b ≥ 2∆ bound of [15, 16]; we show
that b > 4d suffices. (Pegden’s method [24] can also be used
to derive this bound.) Second, our method extends to the
weighted case, where the approach of [15, 16] does not hold
to our knowledge. Suppose now that each vertex i has a
weight wi ≥ 0; it is not hard to observe that G has an in-
dependent set of total weight at least (

∑
i wi)/(∆ + 1), and

that there does not always exist an independent transversal
of weight more than (

∑
i wi)/b. Here, we show that if our

partition satisfies b > 4∆, then there exists an independent

transversal of weight at least (
∑
i wi)

√
b−4∆+

√
b√

b−4∆+
√
b(2b−1)

(which

approaches (
∑
i wi)/b for large b).

We apply our result for independent transversals to the
problem of chromatic capacity. Rödl has shown that for
any acyclic digraph D, there exists an undirected graph D∗

such that all of the latter’s acyclic orientations contain D
as an induced subgraph [26]. Cochand & Duchet introduced

1Wherein the constraint “∀(i, j), xi,j ∈ {0, 1}” is relaxed to
let the xi,j lie in [0, 1].

the notion of chromatic capacity to explicitly construct D∗,
using graphs that have a large value for this parameter [8].
We improve the degree-based upper-bound for the chromatic
number from [3, 8], as well as a related upper-bound on the
“kth upper chromatic number” of the reals due to [3].

We present the Assignment LLL and related notions in Sec-
tions 2, 3 and 4, and follow up with applications in the
subsequent sections.

2. THE ASSIGNMENT LLL
We begin by fixing our notation. For a vector v and scalar

a, we let v = ~a denote that each entry of v is a. Define
A = [n] to be the family of all blocks, and let Zi,j be the
indicator for selecting the jth element from block i. We
are given some Boolean functions B1, B2, . . . , B`, such that
each Bk is determined by, and is an increasing function of,
a subset Sk of the Z variables.

We refer to any ordered pair 〈i, j〉 where j ∈ Ai as an ele-
ment. So, for example, we might refer to Yx where x = 〈i, j〉
as an element. We suppose there are N elements, and some-
times identify the set of elements with the set [N]. When
discussing blocks i and possible values j ∈ Ai, we will of-
ten omit to mention that j ∈ Ai (e.g., as in

∑
j pi,j). This

should always be understood as j being restricted to Ai, or
equivalently that pi,j = 0 for j 6∈ Ai.

Unlike in the usual LLL, we cannot simply define a prob-
ability distribution and compute the probability of the bad
event occuring. We will only have partial control over this
probability distribution, and the following definition will be
important:

Definition 2.1. (UNC) Given a probability distribution Ω
on the underlying indicator variables Z, we say that Ω sat-
isfies upper negative correlation with respect to the vector
q ∈ [0,∞)N – or simply “UNC(q)” – if for all k and for all
distinct elements x1, . . . , xk, we have

PΩ(Zx1 = · · · = Zxk = 1) ≤ qx1 . . . qxk .

For an event E and vector q, we define P∗q(E) to be the
minimum, over all Ω satisfying UNC(q), of PΩ(E). (As
the number of variables is finite, this minimum is achieved.
Also, while we could restrict q ∈ [0, 1]N without loss of gen-
erality, by allowing q ∈ [0,∞)N we simplify the notation
considerably.)

Essentially, when computing P∗q(E), we are not allowing
the random variables Z to be positively correlated. For some
types of events, such as large-deviation events, this allows
us to control the probability very strongly; for other events,
such as a union of many events, this is no better than the
union bound.

Our main theorem is:

Theorem 2.2 (Assignment LLL). Suppose we are given a
CSP for which there exists λ ∈ [0,∞]N such that

∀i ∈ [n],
∑
j

λi,j ·P∗λ[
⋂

k∈Yi,j

Bk
∣∣ Zi,j = 1] > 1.

Then, if no Bk is a tautology, the CSP is feasible.

To prove the theorem, we will study the following proba-
bilistic process. We are given a vector p ∈ [0, 1]N of prob-
abilities, one for each indicator Zx. Each Zx is drawn in-
dependently as Bernoulli-p, i.e., P (Zx = 1) = px. (If for

some event x we have px > 1, then by an abuse of nota-
tion, we take this to mean that Zx = 1 with certainty.) Let
Y = {B1, B2, . . . , B`} denote the set of all bad events. Our
goal is to satisfy all the assignment constraints and avoid
all the events in Y . If Y ′ ⊆ Y , we use the notation ∃Y ′ to
denote the event that some Bi ∈ Y ′ occurs. So in this case,
we want to avoid the event ∃Y .

We recall a basic lemma concerning increasing and de-
creasing events, which follows from the FKG inequality [11]:

Lemma 2.3. Let X0 ⊆ [N]. Suppose B1 is an event which
depends solely on variables X1, where X1 is disjoint from
X0, and let E− be an decreasing event. Then,

P(∀x ∈ X0 Zx = 1 | B1, E
−) ≤

∏
x∈X0

px.

Similarly, if E+ is increasing, then P(∀x ∈ X0 Zx = 1 |
B1, E

+) ≥
∏
x∈X0

px.

Proof. We will only prove the first part of this lemma; the
second is analogous.

We average over all assignments to the variables Zx, for
x ∈ X1. For any such assigment-vector ~z, the event

∧
x∈X0

Zx =

1 is an increasing function, while E− is a decreasing function
in the remaining variables. Hence, by FKG, the probability
of this event conditional on (ZX1 = ~z∧E−) is at most its con-
ditional on ZX1 = ~z alone. But, the events

∧
x∈X0

ZX0 = 1
and ZX1 = ~z involve disjoint sets of variables, so they are
independent. Hence this probability is at most the uncondi-
tional probability of

∧
x∈X0

Zx = ~1, namely
∏
x∈X0

px.

If A′ ⊆ A is any subset of the blocks, we define the event
Assigned(A′) to be the event that, for all i ∈ A′, there is at
least one value of j for which Zi,j = 1. Our goal is to satisfy
the constraint Assigned(A). Because all the bad events are
increasing Boolean functions, if we can find a configuration
in which each block has at least one value assigned, we can
easily alter it to a feasible configuration in which each block
has exactly one value assigned.

We are now ready to state the first lemma concerning this
probabilistic process. We want to show that there is a pos-
itive probability of satisfying all the assignment constraints
and avoiding all bad events. We will show the following key
lemma by induction:

Lemma 2.4. Let 0 < ε < 1. Suppose p ∈ [0, 1]N is a vector
such that for all blocks i,∑

j

pi,j(P
∗
p/ε(¬∃Yi,j | Zi,j = 1))−

∑
j,j′

pi,jpi,j′ ≥ ε.

Then for any block i, any Y ′ ⊆ Y a set of bad events, and
any A′ ⊆ A a set of blocks, we have

P(Assigned(i) | ¬∃Y ′,Assigned(A′)) ≥ ε.

Proof. We show this by induction on |Y ′| + |A′|. We may
assume that i /∈ A′, as otherwise this is vacuous. First, sup-
pose |Y ′| = 0. Then, P(Assigned(i) | ¬∃Y ′,Assigned(A′))
equals P(Assigned(i)) as these events are independent. By
Inclusion-Exclusion, the latter probability is at least

P(Assigned(i)) ≥
∑
j

pi,j −
∑
j,j′

pi,jpi,j′

and it is easy to see that the lemma’s hypothesized con-
straint implies that this is at least ε.

Next suppose |Y ′| > 0. We use Inclusion-Exclusion to
estimate P(Assigned(i) | ¬∃Y ′,Assigned(A′)). First, con-
sider the probability that a distinct pair j, j′ in block i are
jointly chosen, conditional on all these events. For this, by
Lemma 2.3 we have

P(Zi,j = Zi,j′ = 1 | Assigned(A′),¬∃Y ′) ≤ pi,jpi,j′ (1)

as i 6∈ A′ and ¬∃Y ′ is decreasing.
Let us fix j. We next need to show a lower bound on

P(Zi,j = 1 | Assigned(A′),¬∃Y ′). This is easily seen to
equal P(Zi,j = 1) if Yi,j ∩ Y ′ = ∅, so we can assume Yi,j ∩
Y ′ 6= ∅. Using Bayes’ Theorem, we interchange the events
Zi,j = 1 and ∃Yi,j in the conditional probability to obtain

P(Zi,j = 1 | Assigned(A′),¬∃Y ′)
≥ pi,j ·P(¬∃Yi,j | Zi,j = 1,Assigned(A′),¬∃(Y ′ − Yi,j)).

(2)

This approach to handling a conditioning was inspired by
[5].

Consider the random variables Z conditioned on the
events Assigned(A′),¬(Y − Yi,j), Zi,j = 1. Our key claim
now is that these conditional random variables Z (apart
from Zi,j itself) satisfy UNC(p/ε). To show this, we need to
upper-bound P(E1 | E2), where

E1 ≡ (Zi′1,j′1 = · · · = Zi′
k
,j′
k

= 1) and

E2 ≡ (Assigned(A′),¬∃(Y − Yi,j), Zi,j = 1),

for arbitrary k and i′1, j
′
1, . . . , i

′
k, j
′
k. Let I ′ = {i′1, . . . , i′k}

and E3 ≡ (Zi,j = 1,Assigned(A′ − I ′),¬∃(Y − Yi,j)). By
simple manipulations, we obtain

P(E1 | E2) ≤ P(E1 | E3)

P(Assigned(I ′) | E3)
. (3)

Note that E1 does not share any variables with (Zi,j =
1,Assigned(A′ − I ′)), and that ¬∃(Y − Yi,j) is a decreas-
ing event. Hence by Lemma 2.3 the numerator of (3) is at
most pi′1,j′1 . . . pi′k,j

′
k
. Now let us examine the denominator.

The variable Zi,j does not affect any of the events men-
tioned in the denominator, so we may remove it from the
conditioning: i.e., P(Assigned(I ′) | E3) equals

P(Assigned(I ′) | Assigned(A′ − I ′),¬∃(Y − Yi,j)),

which in turn is at least ε|I
′| by iterated application of the

induction hypothesis.
Putting all of this together,

P(E1 | E2) ≤ pi′1,j′1 . . . pi′k,j′k/ε
|I′| ≤ pi′1,j′1 . . . pi′k,j′k/ε

k.

So the random variables Z conditionally satisfy UNC(p/ε)
and we have

P(¬∃Yi,j | Zi,j = 1,Assigned(A′),¬∃(Y ′ − Yi,j))
≥ P∗p/ε(¬∃Yi,j | Zi,j = 1)

The right-hand side is substantially simpler, as there is no
conditioning to link the variables. Substituting this into (1)
and (2), we get

P(Assigned(i) | Assigned(A′),¬∃Y ′)

≥
∑
j

pi,jP
∗
p/ε(¬∃Yi,j | Zi,j = 1)−

∑
j,j′

pi,jpi,j′

and by our hypothesis the right-hand side is at least ε.

Definition 2.5. (Functions h and Hi) Suppose we are
given a CSP and a vector λ ∈ [0,∞)N . For any element
x ∈ [N], let hx(λ) = P∗λ(¬∃Yx | Zx = 1). Then, for any
block Ai, we define Hi(λ) =

∑
j λi,jhi,j(λ).

Having defined the Hi, we can now return to Lemma 2.4
and allow all entries of p to tend to 0 at the same rate, which
leads to the following proof of the Assignment LLL:

Proof. (Of Theorem 2.2.) Given a λ ∈ [0,∞)N such that
Hi(λ) > 1 for all i, we need to show that the CSP is feasible.
Let p = αλ and let ε = α for some α > 0. For α sufficiently
small, p is a probability vector. In order to use Lemma 2.4,
it suffices to satisfy the constraint for all i∑

j

pi,jhi,j(p/ε)−
∑
j,j′

pi,jpi,j′ ≥ ε. (4)

Let us fix a block Ai. Suppose we allow α→ 0. In this case,
(4) will be satisfied for some α > 0 sufficiently small if we
have ∑

j

λi,j ·P∗λ(¬∃Yi,j | Zi,j = 1) > 1

As there are only finitely many blocks, there is α > 0 suf-
ficiently small which satisfies all constraints simultaneously.

In this case, we claim that there is a positive probabil-
ity of satisfying Assigned(Ai), Bk for all blocks Ai and all
bad events Bk, when we assign variables Z independently
Bernoulli-p. First, P(¬∃Y) ≥

∏
x∈[N] P(Zx = 0), since no

Bk is a tautology; the latter product is clearly positive for
small-enough α. Next, by Lemma 2.4 and Bayes’ Theorem,

P(Assigned(1) ∧ · · · ∧Assigned(n) | ¬∃Y) ≥
n∏
i=1

ε > 0.

In particular, there is a configuration of the Zx which satis-
fies all the constraints simultaneously.

3. COMPUTING P∗

In the usual LLL, one can fully specify the underlying
random process, so one can compute the probability of a bad
event fairly readily. In the assignment LLL, we know that
the random variables must satisfy their UNC constraints,
but we do not know the full distribution of these variables.
This can make it much harder to bound the probability of
a bad event.

Roughly speaking, the UNC constraints force the under-
lying variables to be negatively correlated (or independent).
For some types of bad events, this is enough to give strong
bounds:

Lemma 3.1. For random variables Zx1 , . . . , Zxk , let µ =
λx1 + · · ·+ λxk . Then

P∗λ(Zx1 + · · ·+ Zxk ≤ µ(1 + δ)) ≥ 1−
(eδ

(1 + δ)1+δ

)µ
Proof. The Chernoff upper-tail bound applies to negatively
correlated random variables [23].

Suppose we have an increasing bad event B which de-
pends on Zx1 , . . . , Zxk . We are given λ ∈ [0, 1]N . Note
that Ω is a probability distribution on Z1, . . . , ZN , but we

abuse notation to view it as a distribution on Zx1 , . . . , Zxk
as well. We describe a generic algorithm to compute P∗λ(B)
(we sometimes just denote P∗λ(·) as P∗(·)).

As B is an increasing event, we can write B = a1∨· · ·∨an,
where each ai ∈ B is an atomic event, and is minimal in the
sense that for all a′ < ai we have a′ 6∈ B. We assume 0 /∈ B,
as otherwise B is a tautology and P∗(B) = 1.

We say that a probability distribution Ω on the variables
Zx1 , . . . , Zxk is worst-case if P∗λ(B) = PΩ(B). By compact-
ness, such an Ω exists. The basic idea of our algorithm is
to view each PΩ(ω) as an unknown quantity, where ω ∈ Ω
is an atomic event. We write qω = PΩ(ω) for simplicity. In
this case, PΩ(B) is the sum

PΩ(B) =
∑
ω∈B

qω

Furthermore, the UNC constraints can also be viewed as
linear constraints in the variable qω. For each x′1, . . . , x

′
k′ ,

we have the constraint∑
ωx′1

=···=ωx′
k′

=1

qω ≤ λx′1 . . . λx′k′

This defines an LP, in which we maximize the objective
function P∗(B) =

∑
ω∈B qω subject to the UNC constraints.

The size of this LP may be enormous, potentially including
2k variables and 2k constraints. However, in many applica-
tions k is a parameter of the problem which can be regarded
as constant, so such a program may still be tractable. In gen-
eral, we can reduce the number of variables and constraints
of this LP with the following observations.

Proposition 3.2. There is a distribution Ω with PΩ(B) =
P∗(B) and such that Ω is only supported on the atomic
events {0, a1, . . . , an}.

Proof. Suppose Ω satisfies the UNC constraints. Then de-
fine Ω′ as follows. For each atomic event ω, if ω /∈ B, then
shift the probability mass of ω to 0; otherwise, shift the
probability mass of ω to any minimal event ai underneath
it. This preserves all UNC constraints as well as the objec-
tive function.

For some types of bad events, there are certain symmetries
among classes of variables. In this case, one can assume that
the distribution Ω is symmetric in these variables; hence the
probabilities of all such events can be collapsed into a single
variable.

Proposition 3.3. Given a group G ⊆ Sk, where Sk is the
symmetric group on k letters, define the group action of G
on a probability distribution Ω by permutation of the indices
and on λ by permutation of the coordinates. Suppose B, λ
are closed under the action of G. Then there is a worst-case
probability distribution Ω which is closed under G. For this
probability distribution Ω, we only need to keep track of a
single unknown quantity q′ for each orbit of G.

Proof. Given a worst-case Ω, let Ω′ = 1
|G|
∑
g∈G gΩ. As B

is closed under G, each of the distributions gΩ has the same
probability of the bad event B. Since λ is closed under G,
all the UNC constraints are preserved in each gΩ.

We will show how to use these techniques to compute P∗

for various applications in later sections.

4. THE LLL DISTRIBUTION
If we are given a distribution λ satisfying Hi(λ) > 1, then

we know that there exists a configuration which satisfies all
constraints. Furthermore, such a configuration can be found
by drawing the indicators Z as independent Bernoulli-αλ,
for some α > 0 sufficiently small.

We may wish to learn more about such configurations,
other than that they exist. We can use the probabilistic
method, by defining an appropriate distribution on the set
of feasible configurations. We define the LLL-distribution
to be the distribution on feasible configurations Γ that is
induced by the following process:

1. Draw each Zx independently with probability αλ.

2. If the resulting configuration Γ does not satisfy all con-
straints Assigned(A),¬∃Y , return to step (1).

3. Now each block has at least one element selected. If
any block has more than one element, arbitrarily dis-
card all but one.

4. Return the resulting feasible configuration Γ′.

We refer to step (3) as the alteration step and step (2) as
the configuration step.

For α > 0 sufficiently small, this process terminates with
positive probability, returning a feasible configuration Γ′.
Such configuration has exactly one element selected from
each block. We refer to this distribution as Lα.

Note that there are finitely many configurations, and for
each of these the probability of P(Γ | Lα) can be viewed
as a rational function of the parameter α. Hence as α →
0, P(Γ | Lα) must converge. Furthermore, since for any
α > 0 sufficiently small, P(Γ | Lα) defines a probability
distribution, so must the limit as α → 0. We define the
distribution L to be the limiting distribution as α → 0,
and refer to L as the LLL distribution. The reason for this
limiting step is that typically the distribution L gives simpler
and tighter bounds than any Lα. Note however that there
is no explicit process that samples from L.

We show that in the LLL distribution, the probability that
an element x is accepted does not differ too much from λx:

Theorem 4.1. Suppose we are given real numbers λ ∈
[0, 1]N such that for all i we satisfy Hi(λ) > 1. Then, the
distribution L is well-defined. Also, for any i, j we have

λi,j
hi,j(λ)

hi,j(λ)λi,j +
∑
j′ 6=j λi,j′

≤ P(Zi,j = 1 | L) ≤ λi,j .

Proof. As in Theorem 2.2, we set p = αλ and ε = α for some
α > 0 sufficiently small so that∑

j

pi,jhi,j(p/ε)−
∑
j,j′

pi,jpi,j′ ≥ ε

First, we show an easy upper bound on P(Zi,j = 1):

P(Zi,j = 1 | Lα) ≤ P(Zi,j = 1 | Assigned(A),¬∃Y)

≤ pi,j/ε by Lemmas 2.3, 2.4

= λi,j

Next, a lower bound on the probability of having Zi,j = 1
after the alteration step is given by

P(Zi,j = 1 | Lα) ≥ P (Zi,j = 1 | Assigned(A),¬∃Y)

− 2
∑
j<j′

P(Zi,j = Zi,j′ = 1 | Assigned(A),¬∃Y)

Let us examine these in turn. We want to lower-bound
P(Zi,j = 1 | Assigned(A),¬∃Y) and to upper-bound P(Zi,j =
Zi,j′ = 1 | Assigned(A),¬∃Y). We define the event

E ≡ Assigned(A− i) ∧ ¬∃Y.

We have

P(Zi,j = Zi,j′ = 1 | Assigned(A),¬∃Y) =

P(Zi,j = Zi,j′ = 1 ∧Assigned(i) | E)

P(Assigned(i) | E)

≤ pi,jpi,j′

ε
by Lemmas 2.3, 2.4

= O(α)

Next, we lower-bound P (Zi,j = 1 | Assigned(A),¬∃Y) as

P(Zi,j = 1 | Assigned(A),¬∃Y)

=
P(Zi,j = 1 | E)

P(Assigned(i) | E)

=
P(Zi,j = 1 | E)∑

j′ P(Zi,j′ = 1 | E)−
∑
j′,j′′ P(Zi,j′ = Zi,j′′ = 1 | E)

≥
pi,jPp/ε(¬∃Yi,j | Zi,j = 1)

pi,jPp/ε(¬∃Yi,j | Zi,j = 1) +
∑
j′ 6=j pi,j −O(α2)

= λi,j
hi,j(λ)

hi,j(λ)λi,j +
∑
j′ 6=j λi,j′ −O(α)

This implies that the probability of Zi,j = 1 in the distri-
bution Lα is at least

P(Zi,j = 1 | Lα) ≥ λi,jhi,j(λ)

λi,jhi,j(λ) +
∑
j′ 6=j λi,j′ −O(α)

−O(α)

As α→ 0, we have

P(Zi,j = 1 | L) ≥ P (Zi,j = 1 | Lα) ≥ λi,jhi,j(λ)

λi,jhi,j(λ) +
∑
j′ 6=j λi,j′

Suppose we are given non-negative weights wx ≥ 0. By
drawing from the LLL distribution, we can show the exis-
tence of configurations with high or low weights:

Lemma 4.2. Suppose we are given λ ∈ [0, 1]N such that for
all blocks, Hi(λ) > 1.

Fix a block i. To simplify notation, let |Ai| = l with the
elements sorted by weight so that 0 ≤ wi,1 ≤ wi,2 ≤ · · · ≤
wi,l. We define the upper and lower weights for block i as

W−i = min
1<k<l

∑k
j=1 λjwi,j +

∑l
j=k+1 λi,jhi,jwi,j∑k

j=1 λi,j +
∑l
j=k+1 λi,jhi,j

W+
i = max

1<k<l

∑k
j=1 λi,jwi,j +

∑l
j=k+1 λi,jhi,jwi,j∑k

j=1 λi,j +
∑l
j=k+1 λi,jhi,j

Then the expected weight of block i in the LLL distribution
lies in [W−i ,W

+
i].

Proof. The proof is very similar to Theorem 4.1.

Corollary 4.3. Suppose for all blocks Hi(λ) > 1. Then
there is a feasible configuration with weight at most W+ =∑n
i=1 W

+
i . There is also a feasible configuration with weight

at least W− =
∑n
i=1 W

−
i .

5. DIRECT APPLICATIONS

5.1 Independent transversals
It is well-known that a graph G with n vertices and aver-

age degree d has an independent set of size at least n/(d+1).
What if we want independent sets with much more struc-
ture? Suppose we are given a partition of the vertices into
sets V = V1 t · · · t Vk, and we wish to select one vertex
from each set so that the resulting set is an independent set.
(Such a set is known as an independent transversal.)

One important parameter for the independent transversal
problem is the size of the classes, i.e., requiring |Vi| ≥ b for
all i = 1, . . . , k. Alon gives a short LLL-based proof that
a sufficient condition for such an independent transversal
to exist is to require b ≥ 2e∆ [1], where ∆ is the maximum
degree of any vertex in the graph. Haxell provides an elegant
toplogical proof that a sufficient condition is b ≥ 2∆ [15].
The condition of [15] is existentially optimal, in the sense
that no condition of the form b ≥ c∆ is possible for c < 2.

These bounds are all given in terms of the maximum degree
∆, which can be a crude statistic. The proof of [15] adds
vertices one-by-one to partial transversals, which depends
very heavily on bounding the maximum degree of any vertex.
Suppose we let d denote the maximum average degree of
any class Vi. This is a more flexible statistic than ∆. Using
Pegden’s version of the algorithm LLL, we can show that
b ≥ 4d suffices [24] (and this is constructive). We will prove
this same result using our version of the LLL. This proof
offers no advantages over Pegden’s approach, but illustrates
how our LLL can be applied in practice.

Theorem 5.1. Suppose we have a graph G = (V,E) whose
vertex set is partitioned as V = V1 t · · · tVk, where for each
i, (i) the average degree of the vertices in Vi is at most d, and
(ii) |Vi| ≥ b > 4d. Then G has an independent transversal.

Proof. If any |Vi| is greater than b, we may discard its highest-
degree vertices to bring it down to size b exactly, while de-
creasing its average degree. In this way, we may assume
that |Vi| = b for all i. Our constraint is that for each edge
f ∈ E, at most one incident vertex is selected. To use The-

orem 2.2, we set λ = ~β for some β > 0 to be chosen shortly.
Fix any v ∈ V with degree dv, from a class Vi. Then the
event that all bad events Yv are avoided, given that v itself
is selected, is just the event that no neighbor of v is selected.
This occurs with probability hv ≥ 1− dvβ. So we have

Hi(λ) =
∑
v∈Vi

β(1− dvβ) ≥ bβ(1− dβ).

Setting β = 1
2d

shows that b > 4d is a sufficient condition
for an independent transversal to exist.

We can also use our weighting condition to bound the
weight of such an independent transversal, which is not pos-
sible using [15]. Suppose that we are given weights wv for
each vertex of G. There is a simple argument that G has an

independent set of weight at least w(V)
∆+1

. We can also give a
similar bound on the weight of an independent transversal:

Theorem 5.2. Suppose we have a graph G = (V,E) with V
partitioned into classes of size b > 4∆. Then, G has an inde-

pendent transversal of weight at least w(V)
√
b−4∆+

√
b√

b−4∆+
√
b(2b−1)

,

which approaches w(V)/b for large b.

Proof. Define

α∗ =
1−

√
b−4∆
b

2∆

Suppose we set ~λ = α, where α = α∗ + ε. Then, for ε > 0
sufficiently small, we satisfy the constraint of Corollary 4.3.
Hence there exists an independent transversal of weight at
least W−.

Our bound for W−i depends in a rather complicated way
on the distribution of weights within a block. If our goal is
to show a lower bound on the form cw(V) for some constant
c, then the worst-possible distribution of weights is that a
single vertex in each block has all the weight. In this case,
our bound W− gives us that

W− ≥
∑
i

αhw(Vi)

(b− 1)α+ αh

= w(V)
1− α∆

b− α∆

Summing over all blocks, we see that the expected weight

approaches arbitrarily close to w(V)(1−α∗∆)
b−α∗∆ as ε→ 0. As the

set of all independent transversals is finite, this implies the
existence of an independent transversal of weight at least

w(V) ·

(√
b− 4∆ +

√
b√

b− 4∆ +
√
b(2b− 1)

)
.

5.2 Chromatic capacity
Rödl has shown that for any acyclic digraph D, there ex-

ists an undirected graph D∗ such that all of the latter’s
acyclic orientations contain D as an induced subgraph [26].
Cochand & Duchet introduced the notion of chromatic ca-
pacity to explicitly construct D∗, using graphs that have
a large value for this parameter [8]. Given an undirected
multi-graph G, the chromatic capacity χcap(G) is the largest
integer t such that there in an edge t-labeling such that, for
any vertex t-labeling, some edge shares the same color as
both its endpoints. That is,

∃f : E → [t] ∀g : V → [t] ∃ 〈u, v〉 ∈ E g(u) = g(v) = f(u, v)

See [6, 9] for further study of this parameter.
It is shown in [3, 8] that χcap(G) ≤

√
2e∆− e − 1. We

can use our results for independent traversals to show that
that the chromatic capacity is at most 2

√
∆. (A value pro-

portional to
√

∆ is sometimes of the correct order, as shown
by the complete graph [8, 9].)

Theorem 5.3. Let ∆ denote the maximum degree of a graph
G. Then for any graph G, its chromatic capacity is at most
2
√

∆.

Proof. Given graph G with an edge-labeling f on t+1 colors,
construct the graph H as follows. For each vertex v ∈ G and

each color j ∈ [t+1], construct a vertex (v, j) ∈ H. For each
edge e = 〈u, v〉 ∈ G with color j, construct an edge in H
between (u, j) and (v, j). Now partition the vertices of H
by grouping all the vertices (v, 1), . . . , (v, t+ 1) into a single
class.

We can now observe the following simple facts:

1. Any independent transversal of H corresponds to a
unique vertex-labeling of G which avoids f(u, v) =
g(u) = g(v), and vice-versa.

2. The classes in H contain exactly t+ 1 vertices.

3. For each vertex v ∈ G, the average degree of the cor-
responding class in H is dv

t+1
.

By Theorem 5.1, as long as t + 1 > 4 ∆
t+1

, there exists
an independent transversal of H and hence a valid vertex-
labeling of G. This is satisfied when t = 2

√
∆.

We can use this result almost immediately to improve a
related bound of Archer [3] on the upper chromatic number
of the reals. The upper chromatic number of a metric space
S is related to distance-based color-constraints on S [13].
The argument of [3] uses the chromatic capacity to show

that the“kth upper chromatic number”χ̂(k) of the reals under
the Euclidean distance, is at most d4eke. Our bound on the

chromatic capacity above, shows that χ̂(k)(R) ≤ 8k.

5.3 Integrality gap of column-sparse packing
problems

Consider our family of CSPs where we have a series of
linear packing constraints: indexed by k and of the form
“
∑
i,j ak,i,jxi,j ≤ bk”, with non-negative ak,i,j , bk. In addi-

tion, there is the usual assignment constraint, namely a se-
ries of sets A1, . . . , An with the constraints

∑
j∈Ai xi,j = 1.

When does such an integer linear program have a feasible
soluion? Suppose we wish to solve this via LP relaxation.
One technique is to start with the LP where the integrality
constraints on xi,j ∈ {0, 1} are relaxed to x′i,j ∈ [0, 1], and
with the packing constraints tightened to

∑
i,j ak,i,jx

′
i,j ≤ b′k

for some b′k ≤ bk.
The notion of “covering radius” d here is obvious: as in

[4, 17], we assume that for each (i, j), there are at most
d constraints k with ak,i,j 6= 0. Consider, for notational
simplicity, the case where ak,i,j ∈ {0, 1}. We will show that
a bound of

bk ≥ (1 +
1

poly(d)
)b′k + Ω(

√
b′k log d)

suffices to guarantee the existence of an integral solution.
We state this theorem (with notation such as d etc. as

above) very carefully, as the various parameters depend on
each other delicately:

Theorem 5.4. Let c1, c2 > 0 be any constants. There is
some constant c3 ≥ 0 with the following property. If the LP

∀i,
∑
j∈Ai

yi,j ≥ 1; ∀k,
∑
i,j

ak,i,jyi,j ≤ b′k; ∀(i, j), yi,j ∈ [0, 1]

is satisfiable, then so is the integer program

∀i,
∑
j∈Ai

xi,j = 1; ∀k,
∑
i,j

ak,i,jxi,j ≤ bk; ∀(i, j), xi,j ∈ [0, 1]

where for all k we have bk ≥ b′k(1 + d−c1) + c3
√
b′k log d and

b′k ≥ c2 log d.

Proof. We suppose d > 1, as when d = 1 the IP is trivial.
Let us fix c1, c2 > 0; we will show how to choose c3 appropri-
ately. Define ε = d−c1 . Suppose we have a feasible solution
y to the relaxed linear program. In the notation of Theo-
rem 2.2, set λi,j = (1 + ε)yi,j and let Z be the associated
random vector. (In case λi,j > 1, we set xi,j = 1; this only
helps our analysis. Although we do not discuss the details
here, the reader can assume that λi,j ≤ 1 for simplicity.)

For any given pair (i, j), there are most d constraints
that involve Zi,j ; consider any such constraint k. In or-
der to avoid the bad event conditional on Zi,j = 1, we
must have the remaining variables in that constraint sum
to at most bk − 1. The UNC constraints apply to these
variables. So the sum of all such variables has mean µ =∑

(i′,j′)6=(i,j) ak,i′,j′(1 + ε)yi′,j′ ≤ (1 + ε)b′k. We can bound
the probability that such a sum deviates from its mean
by a Chernoff bound under negative correlation [23], where
exp(x) denotes ex:

P ∗λ (bad event k | Zi,j = 1) ≤ exp(− (bk − µ)2

(2 + (bk/µ− 1))µ
)

≤ exp(− (bk − (1 + ε)b′k)2

(2 + (bk
(1+ε)b′

k
− 1))b′k

)

≤ exp(− c23 log d

(2 + c22
√
b′k log d)(1 + d−c1)

)

By our assumption on b′k ≥ c2 log d and our assumption
d > 1, we can simplify this as exp(−c log d), where c is a
constant which increases unboundedly with c3. Hence, in
the notation of Definition 2.5,

hi,j(λ) ≥ 1−
∑

k: ak,t=1

exp(−c log d) ≥ 1− d1−c.

Now, summing over all j ∈ Ai, we have

Hi(λ) ≥
∑
j

λi,j(1− d1−c)

≥
∑
j

(1 + d−c1)yi,j(1− d1−c)

≥ (1 + d−c1)(1− d1−c),

which can be made larger than 1 by choosing c3 sufficiently
large, for any value d > 1. Hence, by Theorem 2.2, there is
a configuration x that satisfies all the IP constraints.

6. PACKET ROUTING

6.1 Overview
We will examine the packet routing problem in much more

detail than the other problems we have considered. This
analysis will use our assignment LLL. However, many of the
improvements we make will be much more problem-specific.
We will improve some choices of parameters, as well as ex-
amine more closely instances in which the congestion is con-
trolled on very small scales. So, we will first examine the
packet-routing problem using the standard LLL; this ex-
tends the analysis of [29] and [25]. We will then show how
to enhance this to handle the nonlinear increasing functions
that arise, by using our assignment LLL.

We begin by reviewing the basic strategy of [29], and
its improvement by [25]. The former has a very readable
overview of our basic strategy, and we will not include all
the details which are covered there. Our choice of param-
eters will be slightly improved from [29] and [25]. We note
that [25] studied a more general version of the packet-routing
problem, so their choice of parameters was not (and could
not be) optimized.

We are given a graph G with N packets. Each packet has
a simple path, of length at most D, to reach its endpoint
vertex (we refer to D as the dilation). In any timestep, a
packet may wait at its current position, or move along the
next edge on its path. Our goal is to find a schedule of
smallest makespan in which, in any given timestep, an edge
carries at most a single packet. We define the congestion C
to be the maximum, over all edges, of the number of packets
scheduled to traverse that edge. It is clear that D and C are
both lower bounds for the makespan, and [20] has known
that in fact a schedule of makespan O(C + D) is possible.
[29] provided an explicit constant bound of 39(C + D), as
well as describing an algorithm to find such a schedule.

While the final schedule only allows one packet to cross an
edge at a time, we will relax this constraint during our con-
struction. We consider “infeasible” schedules, in which each
packet follows its path but where arbitrarily many packets
may pass through each edge at each timestep.2 We define
an interval to be a consecutive set of times in our schedule,
and the congestion of an edge in a given interval to be the
number of packets crossing that edge. If we are referring to
intervals of length i, then we define a frame to be an interval
which starts at an integer multiple of i.

One can easily form an (infeasible) schedule with delay
D and overall congestion C. Initially, this congestion may
“bunch up” in time, that is, certain edges may have very
high congestion in some timesteps and very low congestion
in others. So the congestion is not bounded on any smaller
interval than the trivial interval of length D. During our
construction, we will “even out” the schedule, bounding the
congestion on successively smaller intervals.

Ideally, one would eventually finish by showing that on
each each individual timestep (i.e., interval of length 1), the
congestion is roughly C/D. In this case, one could turn such
an infeasible schedule into a feasible schedule, by simply
expanding each timestep into C/D separate timesteps.

As [25] showed, it suffices to control the congestion on
intervals of length 2. Given our infeasible schedule, we can
view each interval of length 2 as defining a new subproblem.
In this subproblem, our packets start at a given vertex and
have paths of length 2. The congestion of this subproblem
is exactly the congestion of the schedule. Hence, if we can
schedule problems of length 2, then we can also schedule the
2-intervals of our expanded schedule.

Proposition 6.1. ([25]) Suppose there is a instance G with
delay D = 2 and congestion C. Then there is a feasible
schedule of makespan C + 1. Furthermore, such a schedule
can be formed in polynomial time.

The work of [25] used this to improve the bound on the
makespan to 23.4(C +D); it also speculated that by exam-
ining the scheduling for longer, but still small, delays, one

2Unless specified as “feasible”, a “schedule” will refer to a
possibly infeasible schedule.

could further improve the general packet routing. Unfortu-
nately, we are not able to show a general result for small
delays such as D = 3. However, as we will see, the schedules
that are produced in the larger construction of [29] are far
from generic; rather they have relatively balanced conges-
tion on small scales. We will see how to take advantage of
this balanced structure to improve the scheduling.

We next review the general construction of [29].

6.2 Using the LLL to find a schedule
The general strategy for this construction is to add ran-

dom delays to each packet, and then allowing the packet to
move through each of its edges in turn without hesitation.
This effectively homogenizes the congestion across time. We
have the following lemma:

Lemma 6.2. Let i′ < i, and let m,C′ be non-negative in-
tegers. Suppose there is a (possibly infeasible) schedule S of
length L such that every interval of length i has congestion
at most C. Suppose that we have

e× P (Binomial(C,
i′

i− i′) > C′)× (Cmi2 + 1) < 1.

Then there is a (possibly infeasible) schedule S′ of length
L′ = L(1 + 1/m) + i, in which every interval of length i′

has congestion ≤ C′. Furthermore, S′ can be constructed in
polynomial time.

Proof. We break the schedule S into frames of length F =
mi, and refine each separately. Within each frame, we add
a random delay of length i− i′ to each packet separately.

Let us fix an F -frame for the moment. Associate a bad
event to each edge f and i′-interval I, that the congestion
in that interval and edge exceeds C′.

For each I, e, there are at most C possible packets that

could cross, and each does so with probability p = i′

i−i′ .
Hence the probability of the bad event is at most the prob-
ability that a Binomial random variable with C trials and
probability p exceeds C′.

Next consider the dependency. Given an edge f and i′-
interval I, there are at most C packets crossing it, each of
which may pass through up to mi other edges in the frame.
We refer to the combination of a specific packet passing
through a specific edge as a transit. Now, for each transit,
there are (depending on the delay assigned to that packet)
at most i other i′-intervals in which this transit could have
been scheduled. Hence the dependency is at most Cmi2.

By the LLL, the condition in the hypothesis guarantees
that there is a positive probability that the delays avoid all
bad events. In this case, we refine each frame of S to obtain
a new schedule S′ as desired. We can use the algorithmic
LLL to actually find such schedules S′ in polynomial time.

So far, this ensures that within each frame, the congestion
within any interval of length i′ is at most C′. In the refined
schedule S′ there may be intervals that cross frames. To
ensure that these do not pose any problems, we insert a
delay of length i′ between successive frames, during which
no packets move at all. This step means that the schedule
S′ may have length up to L(1 + 1/m) + i.

We note one important distinction between this analyis
and that of Scheideler [29]. In Scheideler, one associates a
bad event to each edge; we have a bad event corresponding
to each edge and interval.

Using Lemma 6.2, we can transform the original prob-
lem instance (in which C,D may be unbounded), into one
in which C,D are small. In order to carry out this analy-
sis properly, one would need to develop a series of separate
bounds depending on the sizes of C,D. To simplify the expo-
sition, we will assume that C,D are very large, in which case
certain rounding effects can be disregarded. When C,D are
smaller, we can show stronger bounds but doing this com-
pletely requires an extensive case analysis of the parameters.

Lemma 6.3. Assume C+D ≥ 2896. There is a schedule of
length at most 1.004(C+D) and in which the congestion on
any interval of length 224 is at most 17, 040, 600. Further-
more, this schedule can be produced in polynomial time.

Proof. Define the sequence ak recursively as follows.

a0 = 256 ak+1 = 2ak

There is a unique k such that a3.5
k ≤ (C +D) < a3.5

k+1. By
a slight variant on Lemma 6.2, one can add delays to obtain
a schedule of length C +D, in which the congestion on any
interval of length i′ = a3

k is at most C′ = i′(1 + 4/ak).
At this point, we use Lemma 6.2 repeatedly to ensure

to control the congestion intervals of length a3
j , for j =

k− 1, . . . 0. At each step, this increases the length of the re-
sulting schedule from Lj to Lj(1+1/aj+1)+aj , and increases
the congestion on the relevant interval from i(1 + 4/ak) to

i(1 + 4/ak)

k−1∏
j=0

(1 + 4/aj)(
1

1− (aj/aj+1)3
)

(We use the Chernoff bound to estimate the binomial tail in
Lemma 6.2.)

For C + D ≥ a3.5
k , it is a simple calculation to see that

the increase in length is from C + D (after the original re-
finement) to at most 1.004(C + D). In the final step of
this analysis, we are bounding the congestion of intervals of
length a3

0 = 224, and the congestion on such an interval is
at most 17040600.

Furthermore, since all of these steps use the LLL, one can
form all such schedules in polynomial time.

See [29] for a much more thorough explanation of this
process.

Now that we have reduced to constant-sized intervals, we
are no longer interested in asymptotic arguments (which use
generic bounds such as the Chernoff bound), and we come
down to specific numbers.

Lemma 6.4. There is a feasible schedule of length at most
10.92(C +D), which can be constructed in polynomial time.

Proof. For simplicity, we assume C +D ≥ 2896.
By Lemma 6.3, we form a schedule S1, of length L1 ≤

1.004(C +D), in which each interval of length 224 has con-
gestion at most 17040600.

Now apply Lemma 6.2 to S1, with m = 64, i′ = 1024, C′ =
1385 to obtain a schedule S2, of length L2 ≤ 1.0157L1 +224,
in which each interval of length 1024 has congestion at most
1385.

Now apply Lemma 6.2 to S2 with m = 64, i′ = 2, C′ = 20,
to obtain a schedule S3 of length L3 ≤ 1.0157L2 + 1024, in
which each frame of length 2 has congestion at most 20.

Now apply Proposition 6.1 to S3, expanding each 2-frame
to a feasible schedule of length 21. The total length of the
resulting schedule is at most 21

2
L3 ≤ 10.92(C +D).

6.3 Better scheduling of the final 2-frame
Let us examine the last stage in the construction more

closely. In this phase, we are dividing the schedule into
intervals of length 2, and we want to control the congestion
of each edge in each 2-frame.

For a given edge f and time t, we let ct(f) denote the
number of packets scheduled to cross that edge in the four
time steps of the original (infeasible) schedule.

Suppose we have two consecutive 2-frames starting at time
t. The reason for the high value of C′ in the final step of
the above construction is that it is quite likely that ct+ ct+1

or ct+2 + ct+3 are much larger than their mean. However,
it would be quite rare for both these bad events to happen
simultaneously. We will construct a schedule in which we
insert an “overflow” time between the 2-frames. This over-
flow handles cases in which either ct + ct+1 is too large or
ct+2 + ct+3 is too large.

Our goal will be to modify either of the 2-frames so as to
ensure that the congestion is at most T . In order to describe
our modification strategy, we first fix, for every packet and
frame, a “first edge” and “second edge” in this frame. Some
packets may only transit a single edge, which we will arbi-
trarily label as first or second. As we modify the schedule,
some packets that initially had two transits scheduled will
be left with only one; in this case, we retain the label for
that edge. So, we may assume that every edge is marked as
first or second and this label does not change.

We do this by shifting transits into the overflow time.
For each 2-frame, there are two overflow times, respectively
earlier and later. If we want to shift an edge to the later
overflow time, we choose any packet that uses that edge as
a second edge (if any), and reschedule the second transit to
the later overflow time; similarly if we shift an edge to the
earlier overflow time. See Figure 1.

S 1 2 3 4 5 6 7 8

S' 1 2 3 4 5 6 7 8

Figure 1: The packets in the original schedule S are
shifted into overflow times in the schedule S′.

Note that in the analysis of [25], the only thing that mat-
ters is the total congestion of an edge in each 2-frame. In de-
ciding how to shift packets into the overflow times, we need
to be careful to account for how often the edge appears as
the first or second transit. If an edge appears exclusively as
a “first edge”, we will only be able to shift it into the earlier
overflow, and similarly if an edge appears exclusively as a
“second edge”.

Keeping this constraint in mind, our goal is to equalize as
far as possible the distribution of edges into earlier and later
overflows. We do this by the following scheme:

For each edge f and every odd integer t = 1, 3, 5, . . . , L,
repeat while ct(f) + ct+1(f) > T :

1. If ct(f) = 0, ct+1(f) > T , then shift one packet into
the later overflow time.

2. Else if ct(f) > T, ct+1(f) = 0, then shift one packet
into the earlier overflow time.

3. Else if ct(f) + ct+1(f) > T, ct(f) > 0, ct+1(f) > 0, and
ct(f) + ct+1(f) is odd, then shift one packet into the
earlier overflow time.

4. Else if ct(f) + ct+1(f) > T, ct(f) > 0, ct+1(f) > 0, and
ct(f) + ct+1(f) is even, then shift one packet into the
later overflow time.

Suppose we fix t to be some odd integer. If we let c′ denote
the congestions at the end of this overflow-shifting process,
then we have c′t(f)+c′t+1(f) ≤ T , and the number of packets
shifted into the earlier (respectively later) overflow time can
be viewed as a function of the original values of the conges-
tions ct, ct+1. We denote these functions by O−(ct, ct+1;T)
and O+(ct, ct+1;T) respectively.

Specifically we have the following condition:

Proposition 6.5. Suppose that we have a schedule of even
length L, and let ct(f) for t = 1, . . . , L denote the number
of times f is scheduled as the tth edge of a packet. Suppose
that for all edges f ∈ E and all t = 1, 3, 5, . . . we satisfy the
constraint

O+(ct(f), ct+1(f);T) +O−(ct+2(f), ct+3(f);T) ≤ T ′

as well as the boundary constraints

O−(c1(f), c2(f)) ≤ T ′ and O+(cL−1(f), cL(f)) ≤ T ′.

Then there is a feasible schedule of makespan L · (T+T ′+2
2

)+
T ′, which can be constructed in polynomial time.

Proof. After the modification, each 2-frame has congestion
at most T , while each overflow time has congestion at T ′.
Each overflow time has delay at most 2, since for any packet
x, there may be at most two edges scheduled into that over-
flow time, namely the edge that had been originally marked
as the second edge of the earlier 2-frame, and the edge that
had been originally marked as the first edge of the latter
2-frame. Hence each 2-frame can be scheduled in time T +1
and each overflow can be scheduled in time T ′ + 1. As
there are L/2 2-frames in the original schedule, there are
L/2 + 1 overflow periods. Hence the total cost is at most

L · (T+T ′+2
2

) + T ′.

Note that the conditions required by this Proposition 6.5
are local, in the sense that any violation is any event which
affects an individual edge and a 4-interval which starts at
an odd time t. We refer to such an interval for simplicity
as an aligned 4-interval. We refer to the conditions required
by this Proposition as the 4-conditions; these conditions can
be viewed as either pertaining to an entire schedule, or to
an individual aligned 4-interval. We also note that the 4-
conditions are monotone, in the sense that if a configuration
violates them, then it will continue to do so if the congestion
of any edge at any time is increased. We can use this to
improve our bound:

Theorem 6.6. There is a feasible schedule of length 8.84(C+
D), which can be found in polynomial time.

Proof. We assume C +D ≥ 2896 for simplicity.
As in the proof of Lemma 6.4, one obtains a schedule S

of length L = 1.0158 × 1.004 × 1.004(C + D) in which the
congestion on any interval of length i = 1024 is at most
C = 1385.

We divide S into frames of length F = 1024m where
m = 64, and add a random delay of length up to 1020
to each packet separately. This increases the length of the
schedule up to L′ ≤ 1.0157L + 1024. We will first show
that each frame individually satisfies the 4-conditions. So
we may concentrate on a single such frame.

We associate a bad event to each aligned 4-interval I and
edge f , that it violates the 4-conditions. It is not hard to
see that the dependence of each such bad event is at most
Cmi2/2.

Now consider the probability of a bad event, that a given
edge and interval has O+(ct, ct+1;T) + O−(ct+2, ct+3, T) >
T ′. (The boundary cases are similar and are omitted.) There
are up to C packets which could affect the given f, I. For
each such packet and each position within the interval, there
is a probability of at most 1/(i − 4) that the packet x is
scheduled at that time (conditional on any allocation to the
other 4 positions). As the bad event is an increasing event, it
suffices to suppose that the distribution of each ct, . . . , ct+3

is iid Binomial with C trials and probability 1/(i− 4).
Now, one can simply enumerate over all possible values

and count the total probability of satisfying Proposition 6.5.
This is possible because we are dealing with a fixed, fi-
nite and relatively small choice of C. A computer program
calculates this probability to be 3.9 × 10−12 for the choice
T = 8, T ′ = 7.

One can verify that these parameters satisfy the LLL con-
dition. In particular, such a schedule S′ exists and can be
found in polynomial time.

In order to ensure that the entire schedule satisfies the 4-
frame conditions, one may insert a delay of length 2 between
consecutive frames. This ensure that the overflow at the
boundaries of the separate frames do not interfere with each
other. Doing this inflates the schedule from length L′ to
length L′(1 + 2/F) + 2 ≤ 1.0158L+ 1027.

By Proposition 6.5, this schedule S′ can be scheduled
in makespan 8.5L′ + 7 ≤ 8.84(C + D). Note that all the
constructions used here can be implemented in polynomial
time.

6.4 The assignment LLL applied to packet rout-
ing

So far, all of the improvements we have made to the packet
routing problem used nothing more than the conventional
LLL. We now show how to modify this construction to use
the assignment LLL in the appropriate places.

Let us examine more closely the process used to refine a
schedule in which each interval of length C has congestion
at most i. We break the schedule S into frames of length
F = mi, and refine each separately. Within each frame, we
add a random delay of length b = i− i′ to each packet sep-
arately. Let us fix an F -frame for the moment. We have an
assignment problem, in which we must assign a delay to each
packet. Our bad events here correspond to an edge receiving
an excessive congestion in some time interval. The precise

meaning of an excessive congestion depends on which stage
of the construction we are at. In the intermediate stages,
all we care about is the total number of packets passing
through that interval. In the final stage, we must satisfy the
4-conditions, which are more delicate conditions depending
on the exact location of the packets within 4-intervals. In
either case, these are local and increasing constraints.

We can modify Theorem 6.6 to use Theorem 2.2 instead
of the LLL:

Proposition 6.7. Let i′ < i, and let m,C′, k be non-negative
integers. Suppose there is a schedule S of length L such that
every interval of length i has congestion at most C for some
C. Suppose also that for some λ ∈ [0, 1] we have

i
(

1−mii′
(eδ

(1 + δ)1+δ

)µ)
> 1

where µ = Ci′λ and δ = C′

Ci′λ − 1 ≥ 0
Then there is a schedule S′ of length L′ = L(1 + 1/m) + i,

in which every interval of length i′ has congestion ≤ C′.

Proof. Suppose we add delays in the range b = i − i′ uni-
formly to each packet within each frame of length F = mi.
For each edge f and i′-interval I, we introduce a bad event
y that the congestion in the interval exceeds C′. We intro-
duce a block corresponding to each packet, and an indicator
Zx,t corresponding to the packet x having delay t. We select
these with probability λ.

Fix a packet x and delay t. This packet x may pass
through up to mi edges in the F -frame. If the delay t is
adopted, then each transit of x occurs at a fixed time and
edge, and will affect up to i′ other intervals. Hence, x, t can
affect at most mii′ congestion events.

Next, fix a bad event y = 〈f, I〉 affected by delay x, t.
We want to estimate the probability of violating the conges-
tion constraint for y, given that Zx,t is set. This congestion
constraint is violated if there are at least C′ other packet
delays (in addition to x, t) scheduled for f in interval I.
There are at most C packets which could be scheduled to
pass through the given edge, and there are i′ possible de-
lays which would contribute to the congestion of the given
edge-interval. So, in all, there are at most Ci′ delay vari-
ables which are relevant to y. Hence the probability of this
event is P∗(

∑
Zx,t ≥ C′), where the random variables Z

in the sum have mean at most Ci′λ. As shown in Proposi-
tion 3.1, the Chernoff bound applies to such sums. Hence

hx,t ≥ mii′
(

1− eδ

(1+δ)1+δ

)µ
.

Thus,

Hx(λ) ≥ iλ×
(

1−mii′
(eδ

(1 + δ)1+δ

)µ)
.

By Theorem 2.2, this suffices to show that a good configu-
ration exists.

The final schedule is the most difficult to bound.

Proposition 6.8. Let m,C, i > 4, λ, T, T ′ be given. Sup-
pose there is a schedule S of length L such that every interval
of length i has congestion at most C. Suppose we choose de-
lay variables independently with probability λ in the range
i − 4, for each packet within each frame of length F = mi.
Then within each frame we have

H ≥ (i− 4)λ
(

1− mi

2
(p∗1 + p∗2 + p∗3 + p∗4)

)

where p∗1 is the probability P∗ of having

O+(c1 + 1, c2) +O−(c3, c4) > T ′

where the congestions c1, . . . , c4 are the sums of random vari-
ables which obey UNC constraints with respect to λ, and
similarly for p∗2, p

∗
3, p
∗
4.

Then there is a schedule of length L′ ≤ (1 + 1/m)L + i,
which satisfies the 4-conditions with T, T ′.

Furthermore, there is an algorithm to compute p∗1, . . . , p
∗
4.

Although this is exponential-time in general, it is tractable
for parameters in the range of interest.

Proof. Fix a frame F , and fix a packet and delay x, t within
that frame. Let us examine the bad events that are affected
by x, t. Once we adopt this delay for the given packet, all
transits of the packet are determined. There are at most
mi/2 positions in which the packet occurs as the first transit
in a pair of aligned 2-frames, and so forth.

Let us fix such a pair of aligned 2-frames and an edge f ,
and we want to estimate the probability P∗ of the event
that the 4-conditions fail, given that the packet is sched-
uled to transit in a given time step relative to the start of
the 2-frames. To simplify the notation, we assume 〈x, t〉 is
scheduled for the first time-step.

This bad event depends solely on the number of packets
traversing the edge in the four relevant time-steps. Let Ω∗

represent the worst-case probability distribution on the vari-
ables Zx′,t′ for other packets x′ and delays t′ which could
affect these four time-steps. Each variable Zx′,t′ can cause
the packet x′ to be scheduled in exactly one of these four
positions. We say a random variable Zx′,t′ has type j if it
affects the jth position (for j = 1, . . . , 4). The total number
of variables of each type is Kj ≤ C.

We define random variables Yj to be the sums of the ran-
dom variable of type j. The bad event can now be written
as

O+(Y1 + 1, Y2) +O−(Y3, Y4) > T ′;

here, we are adding +1 to Y1 because the event 〈x, t〉 is forced
to occur. These random variables Z (and consequently Y)
are not independent, and Ω∗ may represent a quite com-
plicated joint distribution. However by Proposition 3.3 we
may assume, without loss of generality, that Ω∗ is symmetric
in the sense that all atomic events have equal probability,
if they lead to the same value of ~Y = 〈Y1, . . . , Y4〉. Now
the entire probability distribution Ω∗ is determined by the
probability distribution on ~Y .

We now rephrase the UNC-constraints in terms of ~Y . If we
fix a subset of the Zx′,t′ variables and compute the probabil-
ity that all such variables are one simultaneously, then this
depends solely on the number of Zx′,t′ variables of each type.
Suppose we choose k1, . . . , k4 such variables. Then, given a
fixed value for ~Y = ~y, the probability that all such variables

are set simultaneously is
∏4
j=1

(Kj
yj−kj

)

(Kjyj)
. Hence, summing

over values of y, we rephrase the UNC-constraint as: for all
k1, k2, k3, k4,

∑
~y

P(~Y = ~y)

(
K1

y1−k1

)(
K2

y2−k2

)(
K3

y3−k3

)(
K4

y4−k4

)(
K1
y1

)(
K2
y2

)(
K3
y3

)(
K4
y4

) ≤ λk1+k2+k3+k4 .

We relax this to the weaker constraint: for all k1, k2, k3, k4,∑
~y

P(~Y = ~y)

(
C

y1−k1

)(
C

y2−k2

)(
C

y3−k3

)(
C

y4−k4

)(
C
y1

)(
C
y2

)(
C
y3

)(
C
y4

) ≤ λk1+k2+k3+k4 .

By Proposition 3.2, we may assume that Ω∗ is supported
only at Y = 〈0, 0, 0, 0〉 and at minimal bad 〈y1, . . . , y4〉, that
is, values such that 〈y1, . . . , y4〉 is a bad event but decreasing
any coordinate is not a bad event. The probability of the
bad event is the sum of all such probabilities, and all the
UNC constraints are also positive linear constraints with
respect to these probabilities. Hence, in order to determine
the largest possible value of the bad event, we have an LP
over a relatively tractable number of variables: it can solved
using standard LP libraries.

We now apply this construction to replace the two final
steps in the construction of Section 6.3.

Theorem 6.9. There is a feasible schedule of makespan at
most 7.26(C +D).

Proof. For simplicity, we assume C +D ≥ 2896.
By Lemma 6.3, we form a schedule S1, of length L1 ≤

1.004(C +D), in which each interval of length 224 has con-
gestion at most 17, 040, 600. (This step can be executed in
polynomial time.)

We apply Proposition 6.7 with λ = 5.984 × 10−8, C′ =
1319, and m = 64 to obtain a schedule S2 of length L2 ≤
1.0157L1+224, in which each interval of length 1024 has con-
gestion at most 1319. Next apply the algorithm of Propo-
sition 6.8 with λ = 0.001052, T = 6, T ′ = 6. This gives the
bounds

p∗1 ≤ 2.314× 10−7

p∗2 ≤ 3.518× 10−7

p∗3 ≤ 4.270× 10−7

p∗4 ≤ 1.943× 10−7

and hence one can obtain a schedule S3 of length L3 ≤
1.0158L2 +1024 satisfying the 4-conditions with T = 6, T ′ =
6. By Proposition 6.5, this yields a schedule whose makespan
is 7L3 + 6 ≤ 7.26(C +D).

We cannot construct this schedule in polynomial time us-
ing the assignment LLL of this paper. However, we are only
using the assignment LLL for the final stages of this con-
struction; we can use the ordinary algorithmic LLL for the
earlier stages. Hence, one can show that there is an algo-
rithm running in time exp(O(N)) to find a schedule of length
7.26(C+D). This does not seem very efficient, but note that
there is no obvious algorithm to solve the packet-routing
problem optimally in time exp(O(N)); rather, the exhaus-
tive search would cost something like exp(Ω(N logN)).

Acknowledgments. We thank Tom Leighton and Satish
Rao for valuable discussions long ago, which served as the
foundation for this work; but for their declining, they would
be coauthors of this paper. We are thankful to Noga Alon,
Venkatesan Guruswami, Bernhard Hauepler, Penny Haxell,
and Jeff Kahn for helpful discussions, and to the STOC 2013
referees for their valuable comments.

Aravind Srinivasan dedicates this work to the memory of
his late grandmother Mrs. V. Chellammal (a.k.a. Rajalak-
shmi): memories of her remain a great inspiration.

7. REFERENCES
[1] N. Alon. The linear arboricity of graphs. Israel

Journal of Mathematics, 62:311–325, 1988.

[2] N. Alon and J. H. Spencer. The Probabilistic Method,
Third Edition. John Wiley & Sons, Inc., 2008.

[3] A. Archer. On the upper chromatic numbers of the
reals. Discrete Mathematics, 214:65–75, 2000.

[4] J. Beck and T. Fiala. “Integer-making” theorems.
Discrete Applied Mathematics, 3:1–8, 1981.

[5] R. B. Boppana and J. H. Spencer. A useful elementary
correlation inequality. Journal of Combinatorial
Theory, Ser. A, 50:305–307, 1989.

[6] G. Brightwell and Y. Kohayakawa. Ramsey properties
of orientations of graphs. Random Structures and
Algorithms, 4:413–428, 1993.

[7] A. Bulatov, P. Jeavons, and A. A. Krokhin.
Constraint satisfaction problems and finite algebras.
In Proc. International Conference on Automata,
Languages and Programming, pages 272–282, 2002.

[8] M. Cochand and P. Duchet. A few remarks on
orientations of graphs and Ramsey theory. In
G. Halász and V. T. Sós, editors, Irregularities of
Partitions, Algorithms and Combinatorics, volume 8,
pages 39–46. 1989.

[9] P. Erdős and A. Gyárfás. Split and balanced colorings
of complete graphs. Discrete Mathematics, 200:79–86,
1999.

[10] P. Erdős and L. Lovász. Problems and results on
3-chromatic hypergraphs and some related questions.
In Infinite and Finite Sets, volume 11 of Colloq. Math.
Soc. J. Bolyai, pages 609–627. North-Holland, 1975.

[11] C. M. Fortuin, J. Ginibre, and P. N. Kasteleyn.
Corelational inequalities for partially ordered sets.
Communications of Mathematical Physics, 22:89–103,
1971.

[12] H. Gebauer, T. Szabó, and G. Tardos. The Local
Lemma is Tight for SAT. In SODA, pages 664–674,
2011.

[13] D. Greenwell and P. Johnson Jr. Forbidding
prescribed distances for designated colors.
Geombinatorics, 2:13–16, 1992.

[14] B. Haeupler, B. Saha, and A. Srinivasan. New
Constructive Aspects of the Lovász Local Lemma.
Journal of the ACM, 58, 2011.

[15] P. E. Haxell. A note on vertex list colouring.
Combinatorics, Probability, and Computing,
10:345–348, 2001.

[16] P. E. Haxell, T. Szabó, and G. Tardos. Bounded size
components – partitions and transversals. Journal of
Combinatorial Theory, Series B, 88:281–297, 2003.

[17] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D.
Thompson, U. V. Vazirani, and V. V. Vazirani. Global
wire routing in two-dimensional arrays. Algorithmica,
2:113–129, 1987.

[18] K. Kolipaka and M. Szegedy. Moser and Tardos meet
Lovász. In Proceedings of ACM STOC, pages 235–244,
2011.

[19] F. T. Leighton, C.-J. Lu, S. B. Rao, and A. Srinivasan.
New Algorithmic Aspects of the Local Lemma with
Applications to Routing and Partitioning. SIAM
Journal on Computing, 31:626–641, 2001.

[20] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet
routing and jobshop scheduling in O(congestion +
dilation) steps. Combinatorica, 14:167–186, 1994.

[21] M. Molloy and B. Reed. Graph Colouring and the
Probabilistic Method. Springer-Verlag, 2001.

[22] R. Moser and G. Tardos. A constructive proof of the
general Lovász Local Lemma. Journal of the ACM,
57(2):1–15, 2010.

[23] A. Panconesi and A. Srinivasan. Randomized
Distributed Edge Coloring via an Extension of the
Chernoff-Hoeffding Bounds. SIAM Journal of
Computing, 26(2):350–368, 1997.

[24] W. Pegden. An extension of the Moser-Tardos
algorithmic Local Lemma. Arxiv 1102.2583, 2011.

[25] B. Peis and A. Wiese. Universal packet routing with
arbitrary bandwidths and transit times. In IPCO,
pages 362–375, 2011.

[26] V. Rödl. A generalization of Ramsey theorem. In
Graphs, Hypergraphs, and Block Systems, pages
211–220. Zielona Gora, 1976.

[27] V. Rödl. On a packing and covering problem.
European Journal of Combinatorics, 6:69–78, 1985.

[28] T. Rothvoss. A simpler proof for
O(congestion+dilation) packet routing. In Proc.
Conference on Integer Programming and
Combinatorial Optimization, 2013. URL:
http://arxiv.org/pdf/1206.3718.pdf.

[29] C. Scheideler. Universal routing strategies for
interconnection networks. In Lecture Notes in
Computer Science, volume 1390. Springer, 1998.

[30] J. Shearer. On a problem of Spencer. Combinatorica,
5:241–245, 1985.

[31] A. Srinivasan. An extension of the Lovász Local
Lemma, and its applications to integer programming.
SIAM Journal on Computing, 36:609–634, 2006.

