
Project 1 Morally Due Feb 26
This project is worth 10% of your grade. But ALSO, if you score higher

on this project then you did on hw01 then we will REPLACE your hw01
grade with this project grade.

In Java:
hw01grade = max(hw01grade,proj01grade)

In Pascal:
hw01grade := max(hw01grade,proj01grade)

In Pseudocode:
hw01grade ← max(hw01grade,proj01grade)

For this project, you will write a program that will demonstrate the be-
havior of a DFA classifier.

1 Input

Your program will receive a sequence of command-line arguments that dictate
the output that your program should provide. The parameters corresponding
to these arguments are specified below.

1. b - a base-10 number given by the 1st argument. This represents the
base of the numerical input that your DFA classifier will receive.

2. m - a base-10 number given by the 2nd argument. This represents the
modulo value corresponding to your DFA classifier.

3. i - a base-10 number given by the 3rd argument. See part 3 of the
project for details.

4. x - a sequence of base-10 numbers given by the remaining supplied
arguments. Each number k in this sequence represents a base-b digit
(so 0 ≤ k < b). x will represent the sequence of base-b digits that will
be supplied in right to left order to your DFA classifier. NOTE: There
may be multiple arguments corresponding to this parameter.

1

2 Your task

Your program will print a sequence of information to standard output demon-
strating that your program works properly. There will be three parts to this
project, which are given below.

1. Recall that the weights for the given input are given by the sequence
of values

b0 (mod m), b1 (mod m), . . .

This sequence has associated with it both an initial segment and a re-
peated segment. So in the repeating sequence 1, 0, 1, 2, 3, 7, 1, 2, 3, 7, . . .,
the initial segment would be [1, 0] and the repeated segment would be
[1, 2, 3, 7].

For this part of the project, output on one line the initial segment of the
sequence of weights, followed by the repeated segment on the next line.
Each segment should be formatted as a sequence of base-10 numbers in
list form. That is, your sequence of values should be bounded by square
brackets, and consecutive values should be separated by commas. (See
examples in next section.)

2. For this part of the project, output a table representing the DFA clas-
sifier that, given a number y in base b, read right to left, is in a state
k where y ≡ k (mod m).

Let w be the combined lengths of the initial and repeated segments
that you found in the previous step. Your DFA classifier, following the
standard construction, should have exactly w ·m states. (This means
do not give a “clever” solution with less states.) Each state of your
DFA classifier should be represented by a pair (j, k), where j is the
weight index of the state (0 ≤ j < w) and k is the classifier value at
the state (0 ≤ k < m). Additionally, for a given state, the transition
function at that state should be represented as a list of length b, where
the α-th element of the list (0 ≤ α < b) should identify the new state
that is reached upon transitioning on digit α.

Your table should be formatted as a sequence of lines, with a one-to-one
correspondence between lines and states. To properly output your ta-
ble, begin by enumerating each state (j, k) in lexicographical order (so
state (1, 2) will come before state (2, 0)). Upon reaching state (j, k),

2

output that state, and then on the same line, output the transition
function at that state. Each state you output should be formatted as
a pair of base-10 numbers separated by commas, surrounded in paren-
theses. Each transition function represented as a list of states should
be displayed in list form (see part 1). You do not need to specify the
start state since (0, 0) will always be the start state.

After outputting the table, output on a new line how many states the
DFA classifier has.

(Note that this part does not require i or x.)

3. For the final part of the project, output the sequence of states that
would be encountered, from first to last, upon inputting the sequence
of base-b digits x into the DFA classifier above. This sequence of states
should be displayed on a single line in list form, following the formatting
rules used in the previous two parts. By convention, the initial state
(0, 0) should be included in your list as well.

On a new line, you should also output “accept” if and only if x ≡ i
(mod m), otherwise you should output “reject”. (Here, x denotes the
number given by the sequence of base-b digits supplied as arguments
to x. Keep in mind that the digits of x will be given in right to left
order.)

3 Examples

The following examples demonstrate how your program should work and how
output should be formatted. (The first line in each example is not part of the
output, but rather the prompt showing the command-line arguments given
to the program.)

3

3.1 Example 1

$>program 6 8 0 4 5 2

[1, 6, 4]

[0]

(0, 0) [(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5)]

(0, 1) [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)]

(0, 2) [(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7)]

(0, 3) [(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 0)]

(0, 4) [(1, 4), (1, 5), (1, 6), (1, 7), (1, 0), (1, 1)]

(0, 5) [(1, 5), (1, 6), (1, 7), (1, 0), (1, 1), (1, 2)]

(0, 6) [(1, 6), (1, 7), (1, 0), (1, 1), (1, 2), (1, 3)]

(0, 7) [(1, 7), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)]

(1, 0) [(2, 0), (2, 6), (2, 4), (2, 2), (2, 0), (2, 6)]

(1, 1) [(2, 1), (2, 7), (2, 5), (2, 3), (2, 1), (2, 7)]

(1, 2) [(2, 2), (2, 0), (2, 6), (2, 4), (2, 2), (2, 0)]

(1, 3) [(2, 3), (2, 1), (2, 7), (2, 5), (2, 3), (2, 1)]

(1, 4) [(2, 4), (2, 2), (2, 0), (2, 6), (2, 4), (2, 2)]

(1, 5) [(2, 5), (2, 3), (2, 1), (2, 7), (2, 5), (2, 3)]

(1, 6) [(2, 6), (2, 4), (2, 2), (2, 0), (2, 6), (2, 4)]

(1, 7) [(2, 7), (2, 5), (2, 3), (2, 1), (2, 7), (2, 5)]

(2, 0) [(3, 0), (3, 4), (3, 0), (3, 4), (3, 0), (3, 4)]

(2, 1) [(3, 1), (3, 5), (3, 1), (3, 5), (3, 1), (3, 5)]

(2, 2) [(3, 2), (3, 6), (3, 2), (3, 6), (3, 2), (3, 6)]

(2, 3) [(3, 3), (3, 7), (3, 3), (3, 7), (3, 3), (3, 7)]

(2, 4) [(3, 4), (3, 0), (3, 4), (3, 0), (3, 4), (3, 0)]

(2, 5) [(3, 5), (3, 1), (3, 5), (3, 1), (3, 5), (3, 1)]

(2, 6) [(3, 6), (3, 2), (3, 6), (3, 2), (3, 6), (3, 2)]

(2, 7) [(3, 7), (3, 3), (3, 7), (3, 3), (3, 7), (3, 3)]

(3, 0) [(3, 0), (3, 0), (3, 0), (3, 0), (3, 0), (3, 0)]

(3, 1) [(3, 1), (3, 1), (3, 1), (3, 1), (3, 1), (3, 1)]

(3, 2) [(3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2)]

(3, 3) [(3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3)]

(3, 4) [(3, 4), (3, 4), (3, 4), (3, 4), (3, 4), (3, 4)]

(3, 5) [(3, 5), (3, 5), (3, 5), (3, 5), (3, 5), (3, 5)]

(3, 6) [(3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6)]

(3, 7) [(3, 7), (3, 7), (3, 7), (3, 7), (3, 7), (3, 7)]

32

4

[(0, 0), (1, 4), (2, 2), (3, 2)]

reject

3.2 Example 2

$>program 2 5 2 0 1 0 1 0 1

[]

[1, 2, 4, 3]

(0, 0) [(1, 0), (1, 1)]

(0, 1) [(1, 1), (1, 2)]

(0, 2) [(1, 2), (1, 3)]

(0, 3) [(1, 3), (1, 4)]

(0, 4) [(1, 4), (1, 0)]

(1, 0) [(2, 0), (2, 2)]

(1, 1) [(2, 1), (2, 3)]

(1, 2) [(2, 2), (2, 4)]

(1, 3) [(2, 3), (2, 0)]

(1, 4) [(2, 4), (2, 1)]

(2, 0) [(3, 0), (3, 4)]

(2, 1) [(3, 1), (3, 0)]

(2, 2) [(3, 2), (3, 1)]

(2, 3) [(3, 3), (3, 2)]

(2, 4) [(3, 4), (3, 3)]

(3, 0) [(0, 0), (0, 3)]

(3, 1) [(0, 1), (0, 4)]

(3, 2) [(0, 2), (0, 0)]

(3, 3) [(0, 3), (0, 1)]

(3, 4) [(0, 4), (0, 2)]

20

[(0, 0), (1, 0), (2, 2), (3, 2), (0, 0), (1, 0), (2, 2)]

accept

4 Writing and uploading your code

This project is (somewhat) language-agnostic, meaning that we do not re-
quire you to write your code in any one specific language. With that said,
we intend to use the standard output produced by your code as the only

5

measure of determining whether your code works correctly. Since we want to
be able to run your code directly from the command line, we want your code
to be written in a scripting language. (We don’t want to be burdened with
trying to manually compile code from several different languages.) In order
for us to determine how to run your code, you will place a shebang on the
very first line of your code indicating what interpreter to use. Your shebang
should take the form

#!/usr/bin/env interpreter

where interpreter is the name of the interpreter you plan to use. For this
project, you are allowed to use any of the following interpreters: python2,
python3, and ruby. If you there is an interpreter not previously listed that
you would like to use instead, ask about it on Piazza. On the next line of
code (below the shebang), put a comment containing your full name and
your UID.

Your code will be run against numerous different inputs. Since the out-
put provided by your program alone will be used to verify whether your
code works correctly, it is VERY IMPORTANT that your output is properly
formatted and that you outputted everything required. Use the examples
provided above as a reference. However, to make things slightly easier on
your end, space characters and trailing newline characters will be erased
from your program output, so you do not need to worry about those.

Once you have completed the project, name your code file
proj01_lastname. That is, name it “proj01” underscore {your last name in
lowercase}. Submit your code to project proj01 on the Submit Server. To
help boost your grades, if your grade on this project is greater than your
grade on hw01, then your hw01 grade will be changed to the grade for this
project.

6

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://submit.cs.umd.edu/

	Input
	Your task
	Examples
	Example 1
	Example 2

	Writing and uploading your code

